Istituto Nazionale di Neuroscienze

Consorzio Interuniversitario di Neuroscienze

Dipartimento di Neuroscienze 'Rita Levi Montalcini'

INN Open Neuroscience Forum

July 20, 2018 h 2:00 p.m.

Seminar Room – Neuroscience Institute Cavalieri Ottolenghi Regione Gonzole 10, Orbassano (TO)

CORTICAL LAYER II IMMATURE NEURONS ARE HETEROGENEOUS IN MAMMALS

Chiara La Rosa

Department of Neuroscience Rita Levi Montalcini Neuroscience Institute Cavalieri Ottolenghi University of Turin

<u>Abstract</u>

The doublecortin-positive (DCX+) pre-natally generated neurons discovered in the layer II of the rodent piriform cortex are considered a reservoir of "immature" neurons in the adult brain. In some non-rodent species they extend into neocortex and in sheep also into subcortical regions. Hence, immature neurons might be more important in large-brained, long-living mammals. We assessed the occurrence, distribution and amount (linear density - cells/mm of layer II) of type 1 (small-bipolar) and type 2 (large-ramified) DCX+ cortical neurons at 4 comparable brain levels in 13 mammalian species endowed with different brain anatomy, lifespan, ecological niche. Sections were immunostained for cell proliferation (Ki-67, BrdU) and immaturity/maturity markers (PSA-NCAM, NeuN). All non-rodent species considered hosted DCX+ neurons in neocortex, with highly heterogeneous linear densities. By contrast, morphological and phenotypic features were rather constant: type 2 cells represented 10-20% of the total, mostly expressing NeuN, whereas 15-30% of DCX+ cells were also PSA-NCAM+. BrdU and Ki-67 antigen detection confirmed that all DCX+ neurons were non-newly generated/not proliferating. These results show that "immature" cortical neurons do represent a well preserved, yet, highly heterogeneous feature in mammals, especially considering rodent and non-rodent species.

www.ist-nazionale-neuroscienze.unito.it